On the Okounkov-Olshanski Formula for the Number of Tableaux of Skew Shapes

Daniel Zhu¹ mentor: Prof. Alejandro Morales²

¹Montgomery Blair High School

²UMass Amherst

May 20, 2018 MIT PRIMES Conference

Ordinary Shapes Skew Shapes

Partitions

 Partition: way to write a nonnegative integer as a sum of positive integers, without regard to order

$$9 = 3 + 3 + 2 + 1$$
 $\lambda = (3, 3, 2, 1)$ $|\lambda| = 9$

Young diagram: grid of boxes representing a partition

Ordinary Shapes Skew Shapes

Partitions

 Partition: way to write a nonnegative integer as a sum of positive integers, without regard to order

$$9 = 3 + 3 + 2 + 1$$
 $\lambda = (3, 3, 2, 1)$ $|\lambda| = 9$

Young diagram: grid of boxes representing a partition

Standard Young Tableaux

 Standard Young tableau (SYT): way to fill in boxes of a Young diagram with 1 through |λ|, with rows and columns strictly increasing

 f^λ is the dimension of an irreducible representation of the symmetric group

Standard Young Tableaux

 Standard Young tableau (SYT): way to fill in boxes of a Young diagram with 1 through |λ|, with rows and columns strictly increasing

► f^λ is the dimension of an irreducible representation of the symmetric group

Standard Young Tableaux

 Standard Young tableau (SYT): way to fill in boxes of a Young diagram with 1 through |λ|, with rows and columns strictly increasing

- f^{λ} : number of SYT of shape λ
- f^λ is the dimension of an irreducible representation of the symmetric group

Ordinary Shapes Skew Shapes

Hook-Length Formula

Theorem (Frame-Robinson-Thrall, 1954)

$$f^{\lambda} = \frac{|\lambda|!}{\prod_{u \in [\lambda]} h(u)}$$

h(u) is the size of a hook of a cell u

Ordinary Shapes Skew Shapes

Applications of the Hook-Length Formula

▶ Hook lengths of (*n*, *n*) are

SO

$$f^{(n,n)} = \frac{(2n)!}{\prod_{u \in [(n,n)]} h(u)} = \frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} \binom{2n}{n} = C_n$$

Applications of the Hook-Length Formula

▶ Hook lengths of (*n*, *n*) are

SO

$$f^{(n,n)} = \frac{(2n)!}{\prod_{u \in [(n,n)]} h(u)} = \frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} \binom{2n}{n} = C_n$$

Applications of the Hook-Length Formula

▶ Hook lengths of (*n*, *n*) are

SO

$$f^{(n,n)} = \frac{(2n)!}{\prod_{u \in [(n,n)]} h(u)} = \frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} \binom{2n}{n} = C_n$$

Applications of the Hook-Length Formula

▶ Hook lengths of (*n*, *n*) are

SO

$$f^{(n,n)} = \frac{(2n)!}{\prod_{u \in [(n,n)]} h(u)} = \frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} \binom{2n}{n} = C_n$$

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- ls there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Standard Young Tableaux of Skew Shape

- $f^{\lambda/\mu}$: number of SYT of shape λ/μ
- f^{λ/μ} are dimensions of irreducible representations of Hecke algebras
- Is there a formula for $f^{\lambda/\mu}$?

Ordinary Shapes Skew Shapes

Bad News: No Product Formula

One can compute

which is prime

• In particular, $f^{\lambda/\mu}$ does not divide $|\lambda/\mu|!$ anymore

Ordinary Shapes Skew Shapes

Bad News: No Product Formula

One can compute

which is prime

No nontrivial product formula
In particular, f^{λ/μ} does not divide |λ/μ|! anymometry

Ordinary Shapes Skew Shapes

Bad News: No Product Formula

One can compute

which is prime

- No nontrivial product formula
- In particular, $f^{\lambda/\mu}$ does not divide $|\lambda/\mu|!$ anymore

Ordinary Shapes Skew Shapes

Bad News: No Product Formula

One can compute

which is prime

- No nontrivial product formula
- In particular, $f^{\lambda/\mu}$ does not divide $|\lambda/\mu|!$ anymore

The Number of Nonzero Terms An RPP *q*-Analogue

The Okounkov-Olshanski Formula

Theorem (Okounkov-Olshanski, 1996)

$$f^{\lambda/\mu} = \frac{|\lambda/\mu|!}{\prod_{u \in [\lambda]} h(u)} \sum_{T \in SSYT(\mu,d)} \prod_{(i,j) \in [\mu]} (\lambda_{d+1-T(i,j)} + i - j)$$

SSYT(μ , d) is semistandard tableaux of shape μ with all entries at most d

$$\wedge \begin{array}{c} \leq \\ 1 & 1 & 5 \\ 2 & 2 & 6 \\ 8 & 9 \\ 9 \end{array}$$

The Number of Nonzero Terms An RPP *q*-Analogue

The Okounkov-Olshanski Formula

Theorem (Okounkov-Olshanski, 1996)

$$f^{\lambda/\mu} = \frac{|\lambda/\mu|!}{\prod_{u \in [\lambda]} h(u)} \sum_{T \in SSYT(\mu,d)} \prod_{(i,j) \in [\mu]} (\lambda_{d+1-T(i,j)} + i - j)$$

$$f = \frac{5!}{5 \cdot 4 \cdot 3 \cdot 1 \cdot 3 \cdot 2 \cdot 1} (\underbrace{3 \cdot 2}_{111} + \underbrace{3 \cdot 3}_{122} + \underbrace{3 \cdot 3}_{122} + \underbrace{4 \cdot 3}_{122})$$
$$= \frac{1}{3} \cdot 27 = 9$$

The Number of Nonzero Terms An RPP *q*-Analogue

Observations About the Formula

Theorem (Okounkov-Olshanski, 1996)

$$f^{\lambda/\mu} = \frac{|\lambda/\mu|!}{\prod_{u \in [\lambda]} h(u)} \sum_{T \in \text{SSYT}(\mu,d)} \prod_{(i,j) \in [\mu]} (\lambda_{d+1-T(i,j)} + i - j)$$

All terms are nonnegative

• How many nonzero terms are there? (call this $T(\lambda/\mu)$)

The Number of Nonzero Terms An RPP *q*-Analogue

Observations About the Formula

Theorem (Okounkov-Olshanski, 1996)

$$f^{\lambda/\mu} = \frac{|\lambda/\mu|!}{\prod_{u \in [\lambda]} h(u)} \sum_{T \in SSYT(\mu,d)} \prod_{(i,j) \in [\mu]} (\lambda_{d+1-T(i,j)} + i - j)$$

 $^+$ How many nonzero terms are there? (call this T(λ/μ))

The Number of Nonzero Terms An RPP *q*-Analogue

Observations About the Formula

Theorem (Okounkov-Olshanski, 1996)

$$f^{\lambda/\mu} = \frac{|\lambda/\mu|!}{\prod_{u \in [\lambda]} h(u)} \sum_{T \in SSYT(\mu,d)} \prod_{(i,j) \in [\mu]} (\lambda_{d+1-T(i,j)} + i - j)$$

• How many nonzero terms are there? (call this $T(\lambda/\mu)$)

The Number of Nonzero Terms An RPP *q*-Analogue

Our Result

Theorem (Morales-Z., 2018+)

$$T(\lambda/\mu) = \det\left[\binom{\lambda_i - \mu_j + j - 1}{i - 1}\right]_{i,j=1}^d$$

T((4, 3)/(2)) = 3 by previous example

$$\det \begin{bmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} \end{bmatrix} = 1 \cdot 4 - 1 \cdot 1 = 3$$

The Number of Nonzero Terms An RPP *q*-Analogue

Our Result

Theorem (Morales-Z., 2018+)

$$T(\lambda/\mu) = \det\left[\binom{\lambda_i - \mu_j + j - 1}{i - 1}\right]_{i,j=1}^d$$

T((4, 3)/(2)) = 3 by previous example

$$\det \begin{bmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} \end{bmatrix} = 1 \cdot 4 - 1 \cdot 1 = 3$$

The Number of Nonzero Terms An RPP *q*-Analogue

Our Result

Theorem (Morales-Z., 2018+)

$$T(\lambda/\mu) = \det\left[\binom{\lambda_i - \mu_j + j - 1}{i - 1}\right]_{i,j=1}^d$$

T((4, 3)/(2)) = 3 by previous example

$$\det \begin{bmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} \end{bmatrix} = 1 \cdot 4 - 1 \cdot 1 = 3$$

The Number of Nonzero Terms An RPP *q*-Analogue

Proof Idea

The Number of Nonzero Terms An RPP *q*-Analogue

Proof Idea

The Number of Nonzero Terms An RPP *q*-Analogue

Proof Idea

The Number of Nonzero Terms An RPP *q*-Analogue

Proof Idea

The Number of Nonzero Terms An RPP *q*-Analogue

Proof Idea

The Number of Nonzero Terms An RPP *q*-Analogue

Proof Idea

The Number of Nonzero Terms An RPP *q*-Analogue

Reverse Plane Partitions

 Reverse plane partition (RPP): nonnegative integers, rows and columns weakly increasing

• RPP (λ/μ) : RPP of shape λ/μ

The Number of Nonzero Terms An RPP *q*-Analogue

An RPP Generating Function

Definition

For $T \in \mathsf{RPP}(\lambda/\mu)$, let |T| be the sum of entries in T. Then let

$$\operatorname{rpp}_{\lambda/\mu}(q) = \sum_{T \in \operatorname{RPP}(\lambda/\mu)} q^{|T|}.$$

Theorem (Stanley, 1971)

$$\lim_{q \to 1} \operatorname{rpp}_{\lambda/\mu}(q) \cdot (1-q)^{|\lambda/\mu|} = \frac{f^{\lambda/\mu}}{|\lambda/\mu|!}$$

The Number of Nonzero Terms An RPP *q*-Analogue

An RPP Generating Function

Definition

For $T \in \mathsf{RPP}(\lambda/\mu)$, let |T| be the sum of entries in T. Then let

$$\operatorname{rpp}_{\lambda/\mu}(q) = \sum_{T \in \operatorname{RPP}(\lambda/\mu)} q^{|T|}.$$

Theorem (Stanley, 1971)

$$\lim_{q \to 1} \operatorname{rpp}_{\lambda/\mu}(q) \cdot (1-q)^{|\lambda/\mu|} = \frac{f^{\lambda/\mu}}{|\lambda/\mu|!}$$

The Number of Nonzero Terms An RPP *q*-Analogue

Our Result

Theorem (Morales-Z., 2018+)

$$\frac{\operatorname{rpp}_{\lambda/\mu}(q)}{\operatorname{rpp}_{\lambda}(q)} = \sum_{T \in \operatorname{SSYT}(\mu,d)} q^{p(T)} \prod_{u \in [\mu]} (1 - q^{w(u,T(u))})$$

where

•
$$w(u, t) = \lambda_{d+1-t} + i - j$$
 where $u = (i, j)$

$$\blacktriangleright p(T) = \sum_{u \in [\mu], m_T(u) \le t < T(u)} w(u, t)$$

 m_T(u) is the minimum positive integer t such that replacing the entry of u in T with t still yields a semistandard tableau

The Number of Nonzero Terms An RPP *q*-Analogue

Our Result

Theorem (Morales-Z., 2018+)

$$\frac{\operatorname{rpp}_{\lambda/\mu}(q)}{\operatorname{rpp}_{\lambda}(q)} = \sum_{T \in \operatorname{SSYT}(\mu,d)} q^{p(T)} \prod_{u \in [\mu]} (1 - q^{w(u,T(u))})$$

where

•
$$w(u, t) = \lambda_{d+1-t} + i - j$$
 where $u = (i, j)$

▶ p(T) is a sum of w(u, t) for some u, t

Chen and Stanley have a similar *q*-analogue for semistandard tableaux

Other Work

Other results:

• Two other determinant formulas for $T(\lambda/\mu)$

Equivalence of formulas for $f^{\lambda/\mu}$ of Okounkov-Olshanski and Knutson-Tao

- Prove q-analogue without equivariant K-theory, possibly combinatorially
- Relate Okounkov-Olshanski to other formulas

Other Work

Other results:

- Two other determinant formulas for $T(\lambda/\mu)$
- Equivalence of formulas for f^{λ/μ} of Okounkov-Olshanski and Knutson-Tao

- Prove q-analogue without equivariant K-theory, possibly combinatorially
- Relate Okounkov-Olshanski to other formulas

Other Work

Other results:

- Two other determinant formulas for $T(\lambda/\mu)$
- Equivalence of formulas for f^{λ/μ} of Okounkov-Olshanski and Knutson-Tao

- Prove q-analogue without equivariant K-theory, possibly combinatorially
- Relate Okounkov-Olshanski to other formulas

Other Work

Other results:

- Two other determinant formulas for $T(\lambda/\mu)$
- Equivalence of formulas for f^{λ/μ} of Okounkov-Olshanski and Knutson-Tao

- Prove q-analogue without equivariant K-theory, possibly combinatorially
- Relate Okounkov-Olshanski to other formulas

Acknowledgements

- My mentor, Prof. Alejandro Morales
- MIT-PRIMES Program
- Dr. Tanya Khovanova
- MIT Math Department
- My family

Summary

Theorems (Morales-Z., 2018+)

$$T(\lambda/\mu) = \det\left[\binom{\lambda_i - \mu_j + j - 1}{i - 1}\right]_{i,j=1}^d$$
$$\frac{\operatorname{rpp}_{\lambda/\mu}(q)}{\operatorname{rpp}_{\lambda}(q)} = \sum_{T \in \operatorname{SSYT}(\mu,d)} q^{p(T)} \prod_{u \in [\mu]} (1 - q^{w(u,T(u))})$$